Abstract

Pyridoxalphosphate-6-azophenyl-2′,4′-disulfonate (7a, PPADS), a nonselective P2X receptor antagonist, was extensively modified to develop more stable, potent, and selective P2X3 receptor antagonists as potential antinociceptive agents. Based on the results of our previous report, all strong anionic groups in PPADS including phosphate and sulfonate groups were changed to carboxylic acids or deleted. The unstable azo (–NN–) linkage of 7a was transformed to more stable carbon-carbon, ether or amide linkages through the synthesis of the 5-hydroxyl-pyridine moieties with substituents at 2 position via a Diels-Alder reaction. This resulted in the retention of antagonistic activity (IC50 = 400 ∼ 700 nM) at the hP2X3 receptor in the two-electrode voltage clamp (TEVC) assay system on the Xenopus oocytes. Introduction of bulky aromatic groups at the carbon linker, as in compounds 13h–n, dramatically improved the selectivity profiles of hP2X3 when compared with mP2X1 and hP2X7 receptors. Among the substituents tested at the 2-position, the m-phenoxybenzyl group showed optimum selectivity and potency at the hP2X3 receptor. In searching for effective substituents at the 4- and 3-positions, we found that compound 36j, with 4-carboxaldehyde, 3-propenoic acid and 2-(m-phenoxy)benzyl groups, was the most potent and selective hP2X3 receptor antagonist with an IC50 of 60 nM at hP2X3 and marginal antagonistic activities of 10 μM at mP2X1 and hP2X7. Furthermore, using an ex-vivo assay system, we found that compound 36j potently inhibited pain signaling in the rat dorsal horn with 20 μM 36j displaying 65% inhibition while 20 μM pregabalin, a clinically available drug, showed only 31% inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.