Abstract
A series of cyclic peptides having the general structure H-Phe-c[-N(epsilon)-Lys-X-NH-(CH(2))(n)-CO-] were designed on the basis of structure-activity relationship studies of motilin. All were motilin antagonists. The cyclic peptides, in which X is a 3-tert-butyl-substituted tyrosine residue (H-Phe-c[-N(epsilon)-Lys-Tyr(3-tBu)-beta Ala-] (3), H-Phe-c[-N(epsilon)-Lys-Tyr(3-tBu)-Gly-] (6), H-Phe-c[-N(epsilon)-Lys-Tyr(3-tBu)-Abu-] (7), and H-Phe-c[-N(epsilon)-Lys-Tyr(3-tBu)-Ahx-] (8)) showed potent motilin receptor antagonistic activity in the rabbit smooth muscle (pA(2) > 7). The 3-tert-butyl Tyr was found to be the moiety responsible for enhanced binding to the motilin receptor, while the size of the ring had little importance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.