Abstract

In this present work, the design and simulation of crankshaft for multi-cylinder Stirling engine is studied based on finite element analysis. The proposed crankshaft design is based on the typical crosshead slider-crank mechanism that is being used with the consideration of design needs for multi-cylinder Stirling engine. The study focused on the piston-crankshaft assembly that is subjected to compression load in Stirling cycle. Based on the simulation results, the maximum von Mises stress for crankshaft model varies from 0.82 MPa at 1 bar charge pressure to 1.65 MPa at 20 bar charge pressure. Minimum factor of safety is founded to be 33 with maximum deformation under maximum charge pressure. For piston-crankshaft assembly load, minimum factor safety of 2 was observed with maximum compression pressure for minimum charge pressure. The results indicate no yielding and structural failure under compression load case, can be satisfied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.