Abstract

A novel enhancement mode structure, a buried gate gallium nitride (GaN) high electron mobility transistor (HEMT) with a breakdown voltage (BV) of 1400 V–4000 V for a source-to-drain spacing (LSD) of 6 μm–32 μm, is investigated using simulations by Silvaco Atlas. The simulations are based on meticulous calibration of a conventional lateral 1 μm gate length GaN HEMT with a source-to-drain spacing of 6 μm against its experimental transfer characteristics and BV. The specific on-resistance RS for the new power transistor with the source-to-drain spacing of 6 μm showing BV = 1400 V and the source-to-drain spacing of 8 μm showing BV = 1800 V is found to be 2.3 mΩ · cm2 and 3.5 mΩ · cm2, respectively. Further improvement up to BV = 4000 V can be achieved by increasing the source-to-drain spacing to 32 μm with the specific on-resistance of RS = 35.5 mΩ · cm2. The leakage current in the proposed devices stays in the range of ∼5 × 10−9 mA mm−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.