Abstract
In the present era, the demand for self-powered electronic instruments is increasing and their energy consumption is decreasing. The ability to extract energy from the operating environment is of great importance in advanced industrial applications particularly in the field of aerospace. In this research, a nonlinear piezoelectric aeroelastic energy harvester (PAEH) is modeled based on fluid-structure interaction (FSI) that represents an important area of research for the development of innovative energy harvesting solution. This PAEH operates on post critical aeroelastic behavior i.e., Limit Cycle Oscillations (LCOs) that arise after the flutter velocity. Moreover, it is emphasized that the determination of aerodynamic model is necessary for correct prediction of PAEH performance. The design of an aeroelastic harvester based on the use of two different types of piezoelectric materials is presented. The designed model is suitable for energy harvesting and can be utilized to drive nano and microelectronics. Maximum output power obtained for the designed PAEH is found to be 0.55 mW.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.