Abstract

As it stands now, rubber has been the main material used in the making of pneumatic vehicle tyres. Speed of the vehicle depends on many factors like steering geometry, inflation pressure, vehicle load, road temperature and environmental conditions. The main aim of this research is to develop a finite element approach and computationally evaluate the performance of a steady-state rolling tyre by changing the tyre tread patterns. The tyre normally composed of rubber and body-ply was investigated with regards to the effect of the inflation pressure. Tyre modeling using six different types of patterns was completed by using Creo parametric 3D modeling software and then the tyre was discretized into small elements through ANSYS R16.2. The rim area of the tyre was fixed and pressure was applied to the inside surface of the rim. Finite element analysis was completed by using ANSYS R16.2 and equivalent stress, contact stress and contact pressure were found out to identify the best tyre pattern. From the final results it was observed that, Pattern-I had good agreement of results as compared to other type of patterns which showed medium frictional stress and contact pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.