Abstract
Pain and injury of the triangular fibrocartilage complex (TFCC) due to overuse or trauma are commonly diagnosed through static MRI scanning, while TFCC is always involved in radial and ulnar deviation of the wrist. To the best of our knowledge, a dynamic MRI diagnostic method and auxiliary tool have not been applied or fully developed in the literature. As such, this study presents the design and evaluation of a dynamic magnetic resonance imaging (MRI) auxiliary tool for TFCC injury diagnosis. First, 3D scanning and Python are used to measure and fit the radial and ulnar deviation trajectories of healthy participants and patients. 3D printing is then used to manufacture the auxiliary tool for dynamic MRI, and dynamic MRI diagnosis is then conducted to explore the clinical effect. The radial and ulnar deviation trajectory is presented as an asymmetric curve without an obvious circular centre, and the results indicate that the designed auxiliary device meets the requirements of the ulnar and radial movements of the human wrist. According to the MRI contrast test results, the image quality score of patients wearing the auxiliary device is higher than for those without. Such devices could assist clinicians in the diagnosis of TFCC damage, and our method could not only serve as the reference standard for clinical noninvasive diagnosis but also help in understanding the disease and improving the accuracy of TFCC diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.