Abstract

We present a numerical analysis of different fiber termination shapes in order to study the maximum numerical aperture that can be obtained in end emitting plastic optical fibers with diameters around 10 mm. Our analysis includes the modeling of polished fibers with parabolic shape, conical lensed fibers, and wedged fibers with different lengths, angles and curvatures respectively. The optimization of these parameters allows us to obtain a maximum possible angle which the light can be emitted at the plastic fiber end. These results contribute to minimize the use of fiber components in luminaire systems which can be based in solar concentrators coupled to plastic optical fibers, and consequently it allows us to reduce their installation cost. We also analyze the light distribution of the emitted light and the optical tolerances of the parameters above mentioned to evaluate the performance of the optimized fiber lens. These results are of great interest for the improvement and design of compact luminaire systems based in optimized plastic fiber lens for indoor illumination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.