Abstract
Brain arterial aneurysms are localised dilatation in the wall of cerebral arteries that are common among adult population and associated with high incidence of morbidity and mortality. Using flow diverter stent alone to treat cerebral aneurysm is recognized as a safe and effective method. However, flow diverter stents currently available have limitations due to their braided structures. In this paper a novel flow diverter stent is proposed. It is made out of nitinol tubes that provide adequate radial stiffness and tailored surface coverage to overcome problems of currently available braided stents while retaining low porosity and excellent longitudinal flexibility. Finite element analysis using Abaqus has been conducted to investigate radial stiffness, longitudinal flexibility, and maximum strain during packaging of a series of novel stent designs with varied geometric parameters. Results show that porosity below 70% can be achieved and provides radial stiffness and longitudinal flexibility comparable to those of the Neuroform stent that is commonly used for stent assisted coiling. The novel flow diverter has showed great potential for direct treatment of cerebral aneurysms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.