Abstract

The availability of low cost, high performance microprocessors has led to various designs of shared memory multiprocessor systems. As a result, commercial products which are based on shared memory have been proliferated. Such a multiprocessor system is heavily influenced by the structure of memory system and it is not difficult to find that most configurations include local cache memories. The more processors a system carries, the larger local cache memory is needed to maintain the traffic to and from the shared memory at reasonable level. The implementation of local cache memories, however, is not a simple task because of environmental limitations. In particular, the general lack of board space availability presents a formidable problem. A cache memory system usually needs space mostly to support its complex control logic circuits for the cache itself and network interfaces like snooping logic circuits for shared bus. Although packaging can be made denser to reduce system size, there are still multiple processors per board. It requires a more area-efficient cache memory architecture. This paper presents a design of shared cache for dual processor board of bus-based symmetric multiprocessors. The design and implementation issues are described first and then the evaluation and measurement results are discussed. The shared cache proposed in this paper has been determined to be quite area-efficient without the significant loss of throughput and scalability. It has been implemented as a plug-in unit for TICOM, a prevalent commercial multiprocessor system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.