Abstract

With developing technology, robot arms are used in more areas, and this is directly proportional to the work done for its development. Studies on robot arms are generally focused on control. The controllability of robot arms generally provides speed and precision.
 Within the scope of this study, the control optimization of a two-arm robot arm with an optimized proportional integral differential controller (PID) was carried out using a microcontroller. The kinematic operations required to control a two-arm robot arm have been developed by the MATLAB Support Package for Arduino Hardware. The transfer function required for the control system was used for a direct current (DC) brushed motor, using the values given in the motor data sheet. Feedback is provided for the control system thanks to the Hall effect encoder.
 The gripper end of the two-limbed robot arm follows the specified square-shaped reference. In this study, where PID controller was used, controller parameters were obtained with particle swarm, artificial bee colony and chaos game metaheuristic optimization algorithms for square orbit and these parameters were used on the produced robot arm.
 Many methods have been used in the literature to determine PID parameters. In this study, the chaos game metaheuristic optimization algorithm, which has become popular in recent years, was used to determine the parameters of the PID controller.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.