Abstract

Magnetic spectroscopy allows for characterization of the magnetic susceptibility of magnetic beads across a broad frequency range. This enables differentiation and quantification of multiple beads of varying types concurrently present in the active volume of a sensor's surface. A magnetic spectrometer can be used for multi-probe tagging and identification akin to multi-color fluorescent bio-sensing. We propose a new sensing methodology to perform magnetic spectroscopy and analyze various important design parameters such as SNR and gain uniformity. We present a proof-of-concept design of a fully integrated CMOS magnetic spectrometer that can detect, quantify, and characterize magnetic materials in the 1.1 GHz to 3.3 GHz frequency range, where we demonstrate magnetic multiplexing capability using a mixture of two different kinds of magnetic beads. The sensor consumes less than 2 mW of DC power within the whole frequency range, requires no external biasing magnetic fields, is implemented in a standard CMOS process, and can be powered and operated completely from a USB interface. The magnetic spectrometer not only increases the throughput and multiplexing of biosensing experiments for a given sensor area, but also can enable additional applications, such as magnetic flow cytometry and signal-collocation assays of multiple probes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.