Abstract

Highly intense bunches of protons and ions with energies of several MeV/u can be generated with ultra-short laser pulses focused on solid targets. In the most common interaction regime, target normal sheath acceleration, the spectra of these particles are spread over a wide range following a Maxwellian distribution. We report on the design and testing of a magnetic chicane for the selection of protons within a limited energy window. This consisted of two successive, anti-parallel dipole fields generated by cost-effective permanent C-magnets with customized configuration and longitudinal positions. The chicane was implemented into the target vessel of a petawatt laser facility with constraints on the direction of the incoming laser beam and guidance of the outgoing particles through a vacuum port. The separation of protons and carbon ions within distinct energy intervals was demonstrated and compared to a ray tracing code. Measurements with radiochromic film stacks indicated the selection of protons within [2.4, 6.9] MeV, [5.0, 8.4] MeV, or ≥6.9 MeV depending on the lateral dispersion. A narrow peak at 4.8 MeV was observed with a time-of-flight detector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.