Abstract

Abstract The amount of noise present in the Fiber Optic Gyroscope (FOG) signal limits its applications and has a negative impact on navigation system. Existing algorithms such as Discrete Wavelet Transform (DWT), Kalman Filter (KF) denoise the FOG signal under static environment, however denoising fails in dynamic environment. Therefore in this paper an Adaptive Moving Average Dual Mode Kalman Filter (AMADMKF) is developed for denoising the FOG signal under both the static and dynamic environments. Performance of the proposed algorithm is compared with DWT and KF techniques. Further, a hardware Intellectual Property (IP) of the algorithm is developed for System on Chip (SoC) implementation using Xilinx Virtex-5 Field Programmable Gate Array (Virtex-5FX70T-1136). The developed IP is interfaced as a Co-processor/ Auxiliary Processing Unit (APU) with the PowerPC (PPC440) embedded processor of the FPGA. It is proved that the proposed system is an efficient solution for denoising the FOG signal in real-time environment. Hardware acceleration of developed Co-processor is 65× with respect to its equivalent software implementation of AMADMKF algorithm in the PPC440 embedded processor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.