Abstract

The design, analysis, and implementation of an end-to-end transport protocol that is capable of high throughput consistent with the evolving high-speed physical networks based on fiber-optic transmission lines and high-capacity switches are presented. Unlike current transport protocols in which changes in control/state information are exchanged between the two communicating entities only when some significant event occurs, this protocol exchanges relevant and full state information periodically and frequently. It is shown that this reduces the complexity of protocol processing by removing many of the procedures required to recover from network inadequacies such as bit errors, packet loss, and out-of-sequence packets and makes it more amenable to parallel processing. Also, to increase channel utilization in the presence of high-speed, long-latency networks and to support diagrams, and efficient implementation of the selective repeat method of error control is incorporated in the protocol. An implementation using a Motorola 68030-based multiprocessor as a front-end processor is described. The current implementation can comfortably handle 10-15 kpackets/s.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.