Abstract

Purpose – The purpose of this paper is to design and implement a directly cooled photovoltaic thermal (PV/T) hybrid system. Design/methodology/approach – The research design subjects, instruments and methods that were used to collect data are as detailed in the paper. Two polycrystalline photovoltaic (PV) modules were used in this study. Findings – The directly water-cooled PV module (PV/T) was found to operate better as compared to a naturally cooled module for the first three months. The PV/T initially operated at a higher electrical efficiency for 87 per cent of the day. The monthly energy-saving efficiency of the PV/T was found to be approximately 61 per cent, while the solar utilisation of the naturally cooled PV module M1 was found to be 8.79 per cent and that of M2 was 47.93 per cent. Research limitations/implications – The major limitation was the continued drop in efficiency after the first three months of the PV/T placed outdoors. The fall in the efficiency was attributed to water ingress. Practical implications – Direct water cooling of PV modules is possible, only that a better sealing is needed to prevent water ingress. Originality/value – PV air cooling has been researched on. Use of water as a cooling medium has been carried out using serpentine pipes or riser tube, and no direct water cooling on the back of the module has been researched on.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.