Abstract

Increasing interest in prognostics and health management has heightened the need for wireless sensor networks (WSN) with efficient power sources. Piezoelectric energy harvesters using Pb(Zr,Ti)O3 (PZT) are one of the candidate power sources for WSNs as they efficiently convert mechanical vibration energy into electrical energy. These types of devices are resonated at a specific frequency, which has a significant impact on the amount of energy harvested, by external vibration. Hence, precise prediction of mechanical deformation including modal analysis of piezoelectric devices is crucial for estimating the energy generated under specific conditions. In this study, an experimental vibrational system capable of controlling a wide range of frequencies and accelerations was designed to generate mechanical vibration for piezoelectric energy harvesters. In conjunction with MATLAB, the system automatically finds the resonance frequency of harvesters. A small accelerometer and non-contact laser displacement sensor are employed to investigate the mechanical deformation of harvesters. Mechanical deformation under various frequencies and accelerations were investigated and analyzed based on data from two types of sensors. The results verify that the proposed system can be employed to carry out vibration experiments for piezoelectric harvesters and measurement of their mechanical deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.