Abstract

The electrochemical behavior of a new cobalt–cyclodextrin (CD) complex was investigated, in dimethylformamide, from CoX 2 (X = Br and BF 4) in the presence of 1 equiv. 6-Deoxy-6- N-(2-methyliminopyridine)-β-cyclodextrin as ligand. Under these conditions, it was demonstrated for the first time, that the electrogenerated cobalt(I) species can be kinetically and thermodynamically stabilized. The electrochemical study of CoX 2 in the presence of a related iminopyridine ligand (2-pyridyl- N-benzylmethylimine), in which the cyclodextrin (CD) group was replaced by a simple aryl moiety, allowed to highlight the crucial role of the CD in this unexpected stabilization. Importantly, this unprecedented result was only observed when both the iminepyridine and the CD moieties were together covalently attached. Importantly, the supramolecular stabilized low-valent cobalt species remained fairly reactive towards aromatic halides despite its intrinsic stability. This original work opens new opportunities for the development of more selective catalytic processes both in organic and aqueous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.