Abstract
Two new approaches to the design of predictive FIR filters are presented. First, we discuss the design of predictors and estimators for narrow-band signals based on the interpolated FIR (IFIR) filter approach. The transfer function of the IFIR predictor is of the form H(z)=P(z/sup L/)G(z) where P(z) is a predictor and G(z) is an interpolating estimator. The general-purpose design procedure for efficient IFIR predictors is described, and demonstrated for polynomial predictors. The resulting predictors, optimized for white noise attenuation, have much lower computational complexity than the corresponding direct-form FIR predictors. Secondly, an IIR filter-based implementation of sinusoidal FIR predictors is presented. As an application, a zero-crossing detector for 50 Hz thyristor drives is designed. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Instrumentation and Measurement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.