Abstract
Organic/silicon hybrid solar cells have attracted much interest due to their cheap fabrication process and simple device structure. A category of organic substances, Dibenzothiophene-Spirobifluorene-Dithiophene (DBBT-mTPA-DBT), comprises dibenzo [d,b] thiophene and 3-(3-methoxyphenyl)-6-(4-methoxyphenyl)-9H-Carbazole, which function as electron donors. In contrast, methanone is an electron acceptor, with an ∆Est of 3.19 eV. This work focused on hybrid solar cells based on the guest-host phenomena of DBBT-mTPA-DBT and CBP. Using a Si/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) hybrid solar cell with an ultra-thin Dibenzothiophene-Spirobifluorene-Dithienothiophene (DBBT-mTPA-DBT) interlayer between Si and Al led to a PCE of 17.5 ± 2.5%. The DBBT-mTPA-DBT interlayer substantially improved the Si/Al interface, reducing contact resistance from 6.5 × 10⁻1 Ω·cm2 to 3.5 × 10⁻2 Ω·cm2. This improvement increases electron transport efficiency from silicon to aluminum and reduces carrier recombination. The solar cell containing the DBBT-mTPA-DBT/Al double-layer cathode shows a 10.85% increase in power conversion efficiency relative to the standard Al cathode device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.