Abstract

A new technique was developed for studying the mechanical behavior of thin films on substrate applications for micro-electro-mechanical system (MEMS). The test structure was designed on novel “paddle” cantilever beam coated thin film specimens with dimensions of a few hundred to 50 nm. This beam has a triangle shape that provides a uniform plane strain distribution. Standard clean room processing was used to prepare the paddle sample. The experiment can be operated using the electrostatic force to deflect the “paddle” cantilever beam and measure the mechanical response of the sample with surface deposited thin film. A capacitance measurement is used to observe the deflection of the cantilever plate on the other side of the sample with respect to the electrostatic force on the one side. The measured strain was then converted through this capacitance measurement to conduct mechanical behavior studies on the coated thin film. Both system performance experiments and calculations were studied to verify the design concepts. The residual thin film stress measurements were performed and compared with the calculated results from three different forces exerted on the “paddle” cantilever beam, including the force due to the film, compliance force, and electrostatic force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.