Abstract

The achievement of a high toroidal magnetic field in a small spherical tokamak is challenging because of the small bore area in the central cylinder of the vacuum vessel. In this paper, we present a toroidal field coil of 0.3 T at the center of the MT-II tokamak. It has been designed, developed, and tested for installation at Pakistan Tokamak Plasma Research Institute (PTPRI). The coil is made of highly pure oxygen-free copper. It has a cross-sectional area of 10 × 15 mm2 (150 mm2) for the flow of an approximately 20-kA current to produce a 0.33 T toroidal magnetic field at the center of the tokamak. Mechanical support for the central stack of the inner legs is provided by a twisted grooved nylon cylinder to control the torque and attractive forces. The repulsive force density between the joints of the outer and inner legs is balanced by nuts and bolts along with an insulated ring of Teflon and an isolated metallic clamp from both ends. This compressive force also reduces connection resistance. The simulated currents and magnetic field are confirmed from the experimental results as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.