Abstract

For modern aircrafts maneuvering control and reduction of power loss is a matter of great concern in Aerodynamics. Separation of airflow over the wings of aircraft at high angle of attack or at other situations is a hindrance to proper maneuvering control. As flow separation increases drag force on the aircraft, it consumes excess power. For these reasons much effort and research has gone into the design of aerodynamic surfaces which delay flow separation and keep the local flow attached for as long as possible. One of the simple and cost-effective way is to use a hinged flap on the wing of the aircraft, which lifts and self-adjusts to a position dependent on the aerodynamic forces and flap weight due to reversed flow at increasing angle of attack. There is a limitation of this kind of process. At very high angles of attack, the reversed flow would cause the flap to tip forwards entirely and the effect of the flap would vanish. For recovering this limitation an idea of controlling the movement or rotation of the flap has been proposed in this paper. A light surface was selected as a flap and was coupled to the shaft of a servo motor, which was placed on a model airfoil. For controlling the angle of rotation of the motor as well as the flap arbitrarily, an electronic circuit comprising necessary components was designed and applied to the servo motor successfully.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.