Abstract

Proton therapy is a key modality used in the treatment of ocular melanoma. Traditionally ocular sites are treated using a dedicated eyeline with a passively scattered proton beam and a brass aperture. This work aims to design and characterize a beam-collimating aperture to treat ocular targets with a gantry-based spot scanning proton beam. A plastic aperture system that slides into the gantry nozzle of a spot scanning proton beam was designed and constructed. It consists of an intermediate scraper layer to attenuate stray protons and a 3D-printed patient-specific aperture positioned 5.7cm from the surface of the eye. The aperture system was modeled in TOPAS and Monte Carlo simulations were validated with film measurements. Two different spot configurations were investigated for treatment planning and characterized based on lateral penumbra, central axis (CAX) dose and relative efficiency. Alignment and leakage were investigated through experimental film measurements. Range was verified using a multi-layer ionization chamber. Reference dose measurements were made with a PinPoint 3D ion chamber. Neutron dose was evaluated through Monte Carlo simulations. Aperture alignment with radiation isocenter was determined to be within 0.31mm at a gantry angle of 0°. A single-spot configuration with a 10mm diameter aperture yielded film-measured lateral penumbras of 1mm to 1.25mm, depending on depth in the spread-out Bragg peak. TOPAS simulations found that a single spot configuration results in a flat dose distribution for a 10mm diameter aperture and provides a CAX dose of less than 106% for apertures less than 14mm in diameter. For larger targets, adding four corner spots to fill in the dose distribution is beneficial. Trade-offs between lateral penumbra, CAX dose and relative efficiency were characterized for different spot configurations and can be used for future clinical decision-making. The aperture was experimentally determined to not affect proton beam range, and no concerning leakage radiation or neutron dose was identified. Reference dose measurements with a PinPoint ion chamber were within 2.1% of Monte Carlo calculated doses. The aperture system developed in this work provides a method of treating ocular sites on a gantry-based spot scanning proton system. Additional work to develop compatible gaze tracking and gating infrastructure is ongoing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.