Abstract

Monitoring volatile organic compound (VOC) pollution levels in indoor environments is of great importance for the health and comfort of individuals, especially considering that people currently spend >80% of their time indoors. The primary aim of this paper is to design a low-power ZigBee sensor network and internode data reception control framework to use in the real-time acquisition and communication of data concerning air pollutant levels from VOCs. The network consists of end device sensors with photoionization detectors, routers that propagate the network over long distances, and a coordinator that communicates with a computer. The design is based on the ATmega16 microcontroller and the Atmel RF230 ZigBee module, which are used to effectively process communication data with low power consumption. Priority is given to power consumption and sensing efficiency, which are achieved by incorporating various smart tasking and power management protocols. The measured data are displayed on a computer monitor through a graphical user interface. The preliminary experimental results demonstrate that the wireless sensor network system can monitor VOC concentrations with a high level of accuracy and is thus suitable for automated environmental monitoring. Both good indoor air quality and energy conservation can be achieved by integrating the VOC monitoring system proposed in this paper with the residential integrated ventilation controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.