Abstract

The performance of portable or wearable oximeters is affected by improper movement or wear, which causes an error in the blood oxygen concentration calculation. The error comes from external incident stray light or light leakage caused by the improper fit of the sensor to the skin. This study aimed to develop a flexible blood oxygen sensing system with a 3 × 3 array that uses a reflective-type blood oxygen sensing chip to sequentially measure the blood oxygen levels at nine locations through a time division pulse modulation method. Each sensing chip has light transmission and receiving parts. A flip chip package was used to integrate the sensing chip, and a flexible parylene substrate that could fit the curvature of the wrist and locate the array of photo diodes around the radial artery of the wrist was used. By scanning the sensor array in dynamic behavior, the correct light intensity can be extracted to obtain the blood oxygen concentration and prevent errors due to improper fit or sensor movement during exercise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.