Abstract
AbstractIn this work, a design of the PID controller constructed on the memductor model concept and its performance is evaluated further by applying it to an automatic voltage regulator (AVR). The idea is to adjust the PID controller gain settings online through the variation of memconductance during abnormal or transient conditions. The current-feedback operational amplifier (CFOA) is used to regulate the transient response. Further, a charge-controlled grounded emulator (CCGE) circuit is employed for the memductor PID controller (MPID). The proposed approach results in a varying optimum gain parameter of the PID controller instead of constant gain parameter operation in the case of conventional PID controllers. To support the controller’s performance, the challenges generally occurred to regulate output voltage automatically by the excitation voltage control in case of synchronous generators under various conditions are taken for investigation and to provide a solution to it. In the end, the superiority and robustness of the memductor based PID controller in comparison to the conventional PID controller are presented and verified with stability analysis in both time and frequency domain form. The comparative simulation results are demonstrated to justify the possibility of real-time application of the proposed approach due to its better performance for numerous power system control applications.KeywordsAVRPID controllerMemductor PID controller (MPID)CFOACCGE
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.