Abstract

The mutual desire for higher fuel economy and greater performance along with stringent emission regulations set by the government for diesel engines necessitates enhanced air-fuel mixing for proper combustion. The design of intake port plays a major role in an engine design, development and optimization, as it controls the power developed, fuel consumed and exhaust emissions from the engine. The effects of different geometrical parameters of helical port on swirl performance were studied. A methodology is proposed for the design of helical inlet port of diesel engine in order to achieve target value of 1.8 swirl number. The computational fluid dynamics approach is used for analysis of intake port performance. The port performance of prototype flow box was analyzed experimentally on a steady flow rig. The observed mean swirl number and flow capacity values satisfy the requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.