Abstract
The upper limb exoskeleton has the advantages of high durability, low labor intensity, and repeatability, and has broad application prospects in stroke rehabilitation. Aiming at the incompatibility of the upper limb exoskeleton robotic with the human, an upper limb exoskeleton rehabilitation robot (ULERR) was designed. Firstly, according to the human anatomy, the joint configuration of human upper limbs is analyzed. The ULERR is designed for the rehabilitation training of patients with hemiplegia in the middle and late stages caused by stroke. Secondly, it is established the kinematics and dynamics model of the exoskeleton and completed the analysis of dynamic simulation. Finally, the rehabilitation robot prototype was tested by a 3D dynamic capture system to measure the range of motion (ROM) of the upper limb joints with the rehabilitation robot. Finally, the results of simulation and experimental concluded that joint motion of the robot is stable, the degrees of freedom (DoFs) of robot is conform to human motion, the designed robot is reasonable, and the robot is suitable for rehabilitation training requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.