Abstract

This study focuses on design and analysis of an intelligent vibration isolation platform for reaction wheel assemblies (RWAs) and momentum wheel assemblies (MWAs). A passive platform consisting of four folded beams is designed and analysed for MWAs. A simple and effective mathematical model is developed for the system consisting of the platform and MWAs, and this model is used to investigate the passive vibration isolation performance. Further development is performed to produce an intelligent platform for RWAs, with piezoelectric sensors and actuators bonded to the vertical beams. The flywheel imbalance and impulse load are assumed to be input disturbances for the investigation of the active vibration isolation performance by the finite element method (FEM). The simulation results show that the passive vibration isolation platform is particularly effective for the suppression of a high frequency range vibration for MWAs, and the intelligent platform using velocity feedback control effectively attenuates the dynamic amplification of amplitude at resonance for RWAs. Thus, it is concluded that the passive platform can be used as a vibration isolation platform for MWAs and that the intelligent one can be used for RWAs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.