Abstract

In recent years, Fast Tool Servo (FTS) mechanism in precision manufacturing equipment emerges as a promising application for the piezo-actuated flexible nanopositioner. A flexible nanopositioner with large stroke, high bandwidth, high precision and multi-Degrees-of-Freedom (multi-DOFs) is really desired for this application. In order to meet this requirement, a novel 2-DOF flexible nanopositioner consists of two pairs of differential lever displacement amplifiers (DLDA) is proposed in this paper first, also, kinetostatics modeling is conducted by using the Pseudo-Rigid Body (PRB) method. After a series of mechanism optimal designs, the performance of the designed nanopositioner is verified by using the Finite Element Analysis (FEA) method. A piezoelectric (PZT) actuator with 90 µm is selected in this simulation, the experimental results indicate that the mechanism workspace can achieve around 2.1×2.1 mm2, the bandwidth can reach up to around 136 Hz, while the cross-coupling is also kept with 1%. All the results consistently prove the proposed device possesses satisfactory performance for fulfilling the practical precision manufacturing tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.