Abstract

This work introduces the use of compressed sensing (CS) algorithms for data compression in wireless sensors to address the energy and telemetry bandwidth constraints common to wireless sensor nodes. Circuit models of both analog and digital implementations of the CS system are presented that enable analysis of the power/performance costs associated with the design space for any potential CS application, including analog-to-information converters (AIC). Results of the analysis show that a digital implementation is significantly more energy-efficient for the wireless sensor space where signals require high gain and medium to high resolutions. The resulting circuit architecture is implemented in a 90 nm CMOS process. Measured power results correlate well with the circuit models, and the test system demonstrates continuous, on-the-fly data processing, resulting in more than an order of magnitude compression for electroencephalography (EEG) signals while consuming only 1.9 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\mu$</tex></formula> W at 0.6 V for sub-20 kS/s sampling rates. The design and measurement of the proposed architecture is presented in the context of medical sensors, however the tools and insights are generally applicable to any sparse data acquisition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.