Abstract

Piezoelectric actuators are widely used in the optical field due to their high precision, compact structure, flexible design, and fast response. This paper presents a novel piezoelectric actuator with a bridge-type mechanism, which can be used to stabilize the images of an infrared imaging system. The bridge amplification mechanism is used to amplify the actuation displacement, and its structural parameters are optimized by the response surface method. The control strategy of the image stabilization system is formulated, and the overall structure of the infrared image stabilization system is designed according to the principle of image stabilization and the control strategy. The prototype was fabricated and verified by a series of experiments. In the test, the laminated piezoelectric ceramics are used as the driving element, and its maximum output displacement was about 17 μm under a voltage of 100 V. Firstly, the performance of the piezoelectric amplification mechanism was tested, and the maximum displacement of the piezoelectric micro-motion mechanism was 115 μm. The displacement amplification ratio of the mechanism was 5.7. Then, the step distance and response time of the micro-displacement mechanism were measured by inputting the stepping signal. When the input voltage increased to 3 V, 5 V, and 7 V, the stepping displacements of the mechanism were 2.4 μm, 4.1 μm, and 5.8 μm. Finally, the image stabilization effect of the designed mechanism was verified by imaging timing control and feedback signal processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.