Abstract

The aim of the current study was directed to develop a new sea sediment/titanate photocatalyst to remove cephalexin from aqueous media in the presence of ultraviolet (UV) light, hydrogen peroxide (H2O2), and ultrasonic waves. The influence of furnace temperature (300, 350, 400, and 500°C), furnace residence time (1, 2, 3, and 4h), and ratio of sea sediment: titanium (0-6 v: w) on the physicochemical properties and the cephalexin removal by the sea sediment/titanate photocatalyst was explored. The technique of FTIR, SEM/EDX, XRD, BET, BJH, and Mapping was used to determine the physicochemical properties of the generated photocatalyst. The maximum cephalexin removal (94.71%) was obtained at the furnace temperature of 500°C, the furnace residence time of 2h, and the sea sediment: titanium ratio of 1:6 (=12mL TiO2/2 g sea sediment). According to the acquired results, the surface area of the optimized catalyst, namely Cat-500-2-12, was computed to be 52.29m2/g. The crystallite size of titanium oxide on the optimum photocatalyst was calculated ~17.68nm. The FTIR test confirmed the presence of C=C, O-H, C=O, C-S, and C-H functional groups in the photocatalyst. The transformation pathway for the degradation of cephalexin by the developed system was drawn. The present investigation showed that the developed technique (sea sediment/titanate-UV-H2O2-ultrasonic) could be used as a promising alternative for attenuating cephalexin from aqueous solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.