Abstract

This study presents a new way to reconstruct the extent of medieval archaeological sites by using approaches from the field of geoinformatics. Hence, we propose a combined use of non-invasive methodologies which are used for the first time to study a medieval village in Romania. The focus here will be on ground-based and satellite remote-sensing techniques. The method relies on computing vegetation indices (proxies), which have been utilized for archaeological site detection in order to detect the layout of a deserted medieval town located in southwestern Romania. The data were produced by a group of small satellites (3U CubeSats) dispatched by Planet Labs which delivered high-resolution images of the Earth’s surface. The globe is encompassed by more than 150 satellites (dimensions: 10 × 10 × 30 cm) which catch different images for the same area at moderately short intervals at a spatial resolution of 3–4 m. The four-band Planet Scope satellite images were employed to calculate a number of vegetation indices such as NDVI (Normalized Difference Vegetation Index), DVI (Difference Vegetation Index), SR (Simple Vegetation Ratio) and others. For better precision, structure from motion (SfM) techniques were applied to generate a high-resolution orthomosaic and a digital surface model in which the boundaries of the medieval village of “Șanțul Turcilor” in Mașloc, Romania, can be plainly observed. Additionally, this study contrasts the outcomes with a geophysical survey that was attempted inside the central part of the medieval settlement. The technical results of this study also provide strong evidence from an historical point of view: the first documented case of village systematization during the medieval period within Eastern Europe (particularly Romania) found through geoscientific methods.

Highlights

  • Vegetation indices for site identification have been used in archaeology for a long time [1,2,3]

  • The aspect parameter is important for the location of the site

  • Euphorbia has not been examined for archaeological site detection in prior research, our results suggest this may be a good proxy for identifying other buried archaeological features in this region

Read more

Summary

Introduction

Vegetation indices for site identification have been used in archaeology for a long time [1,2,3]. Crop marks have been the key component of most aerial archaeology [4,5,6,7,8]. The theory behind studying crop marks is associated with the composition and moisture within the soils [9]. Ditches, or any other “negative” features (namely topographic depressions) are typically filled with organic material which makes the soil more fertile. The vegetation is usually more abundant on top of such features than in their vicinity. Architectural features such as walls, foundations, or roads cause soil reduction and are not favourable to plant growth [10]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.