Abstract

Single-atom catalysts (SACs) are a new research frontier in electrocatalysis such as in the hydrogen evolution reaction (HER). Recent theoretical and experimental studies have demonstrated that certain M–N–C (metal–nitrogen–carbon) based SACs exhibit excellent performance for HER. Here we report a new approach to tune HER activity for SACs by changing the size and dimensionality of the carbon substrate while maintaining the same coordination environment. We screen the 3d, 4d, and 5d transition metal SACs in N-doped 2D graphene and nanographenes of several sizes for HER using first-principles density functional theory (DFT). Nanographenes containing V, Rh, and Ir are predicted to have significantly enhanced HER activity compared to their 2D graphene counterparts. We turn to machine learning to accurately predict the free energy of hydrogen adsorption (ΔGH) based on various descriptors and compressed sensing to identify key descriptors for activity, which can be used to further screen for additional candidates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.