Abstract

We provide a description of the ground state correlations induced by a general pairing Hamiltonian in a finite system of like fermions in terms of four-body correlated structures (quartets). These are real superpositions of products of two pairs of particles in time-reversed states. Quartets are determined variationally through an iterative sequence of diagonalizations of the Hamiltonian in restricted model spaces and are, in principle, all distinct from one another. The ground state is represented as a product of quartets to which, depending on the number of particles (supposed to be even, in any case), an extra collective pair is added. The extra pair is also determined variationally. We show some realistic applications of the quartet formalism in the case of Sn isotopes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.