Abstract

Employing a previously derived model to describe intra-diffusion coefficients in liquid mixtures based on molecular simulations of spherical Lennard–Jones particles [T. Merzliak, A. Pfennig, Mol. Simul. 30 (7) (2004) 459–468], an improved set of coefficients was obtained from optimized molecular dynamics simulations. In these simulations, the thermodynamic states were planned with the help of optimal experimental design, which allows to reduce the number of simulations necessary for significant determination of the coefficients by roughly a decade. The model was then applied to the real liquid mixtures toluene + cyclohexane, toluene + 1,4-dioxane, n-hexane + toluene, 1,4-dioxane + cyclohexane and cyclohexane + n-hexane, which have molecular properties that correspond to the model assumptions. Experimental intra-diffusion coefficients for the mixtures toluene + cyclohexane, toluene + 1,4-dioxane, n-hexane + toluene and 1,4-dioxane + cyclohexane were determined with nuclear magnetic resonance (NMR) techniques in this work. Even without additional parameters for the mixture the proposed model can describe the diffusion coefficients with an average accuracy of 5%. Allowing a deviation from Lorentz–Berthelot mixing rules leads generally only to slight improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.