Abstract

Abstract An overview of the National Oceanic and Atmospheric Administration’s (NOAA) current operational Smoke Forecasting System (SFS) is presented. This system is intended as guidance to air quality forecasters and the public for fine particulate matter (≤2.5 μm) emitted from large wildfires and agricultural burning, which can elevate particulate concentrations to unhealthful levels. The SFS uses National Environmental Satellite, Data, and Information Service (NESDIS) Hazard Mapping System (HMS), which is based on satellite imagery, to establish the locations and extents of the fires. The particulate matter emission rate is computed using the emission processing portion of the U.S. Forest Service’s BlueSky Framework, which includes a fuel-type database, as well as consumption and emissions models. The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model is used to calculate the transport, dispersion, and deposition of the emitted particulate matter. The model evaluation is carried out by comparing predicted smoke levels with actual smoke detected from satellites by the HMS and the Geostationary Operational Environmental Satellite (GOES) Aerosol/Smoke Product. This overlap is expressed as the figure of merit in space (FMS), the intersection over the union of the observed and calculated smoke plumes. Results are presented for the 2007 fire season (September 2006–November 2007). While the highest FMS scores for individual events approach 60%, average values for the 1 and 5 μg m−3 contours for the analysis period were 8.3% and 11.6%, respectively. FMS scores for the forecast period were lower by about 25% due, in part, to the inability to forecast new fires. The HMS plumes tend to be smaller than the corresponding predictions during the winter months, suggesting that excessive emissions predicted for the smaller fires resulted in an overprediction in the smoke area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.