Abstract

A fiber-optic bundle, placed in the imaging plane of a microspectrometer, functions as a variable-size pinhole. This arrangement allows for conventional confocal measurements to be made by collecting the signal from the central fiber. On the other hand, measurements arising from a larger focal volume are made by integrating the signal from the entire bundle. This new “super-focal” imaging technique yields larger imaging depth without any loss in spectral resolution. The instrument design and performance are described, as well as geometric optics calculations which accurately predict the depth resolution and oscillations in the super-focal depth response. Raman scattering from a three-component layered sample is used to illustrate the extension of this technique to more complicated systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.