Abstract
Results are presented from a numerical and analytical study of negatively buoyant thermals. The numerical study consists of large-eddy simulations of thermal descent and spread. The thermals are initiated by a spherical perturbation in the homogeneous background potential temperature. Simulations covering various release heights, thermal radii and thermal buoyancies are carried out. The analysis involves matching similarity models of a thermal and an axisymmetric gravity current, hence describing the flow evolution in terms of the initial conditions and flow coefficients only. The simulations demonstrate that the flow transition through the impingement region is relatively smooth, the main flow adjustment being in the initial post-release phase of the thermal. Comparison of the simulations and the model enables determination of the coefficients, and validation of the similarity approach to predict the radial speed, reduced gravity and depth of the spreading flow on the ground. The predictions of reduced gravity and depth also depend on quantification of the increase in gravity-current volume due to entrainment, which is obtained from the simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.