Abstract
Shale gas wastewater is a hypersaline industrial effluent in demand of efficient treatment or resource recovery. Membrane distillation (MD) is a heat-driven desalination process of high potential to deal with such streams. However, its application is highly limited by the unsatisfactory hydrophobic membranes that involve a trade-off between vapor permeability and fouling/wetting resistance. Our previous studies highlighted the potential role of an intermediate coating layer of a carbon nanotube (CNT) for the superhydrophobic membrane with 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FAS) grafted to address the trade-off issue against synthetic saline oily wastewater. The work herein investigated its application performance in the continuous concentration and water recovery of real shale gas wastewater, with a commercial PVDF membrane as the reference. The modified membrane recycled 48.2% of the total volume as high-quality water and rejected 99% of feed salinity, achieving a superior concentration rate and flux recovery rate compared to PVDF. The value of the COD, total nitrogen, and ammonia nitrogen in the permeate after the modified membrane was less than 50, 20, and 20 mg/L, meeting the local wastewater discharge standard. It was pointed out that the inorganic fouling for the MD membrane was more of a concern in dealing with a real stream, but the modified membrane exhibited excellent fouling resistance. The cost associated with the treatment was estimated at USD 2.2/m3 for a production capacity of 2000 m3/d. The proposed superhydrophobic membrane has proven to be a feasible alternative from both technical and economic standpoints, offering the potential to improve MD effluent water quality and mitigate membrane fouling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.