Abstract
It is argued that fractional acoustic wave equations come in two kinds. The first kind is constructed ad hoc to have loss operators that fit power law measurements. The second kind is more fundamental as they in addition are based on underlying physical equations. Here that means constitutive equations. These equations are the fractional Kelvin–Voigt and the more general fractional Zener stress–strain relationships as well as a fractional version of the Fourier heat law. The properties of the wave equations are given in terms of attenuation, and phase/group velocities for low-, intermediate- and high-frequency regions. In the most general case, the attenuation exhibits power law behavior in all frequency ranges while the phase and group velocities increase sharply in the intermediate frequency range and converge to a constant, finite value for high frequencies. It is also shown that the fractional Zener wave equation is equivalent to the multiple relaxation model for attenuation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.