Abstract

AbstractIn this study, an early‐working algorithm is designed to evaluate derivatives of electron repulsion integrals (DERIs) for heavy‐element systems. The algorithm is constructed to extend the accompanying coordinate expansion and transferred recurrence relation (ACE‐TRR) method, which was developed for rapid evaluation of electron repulsion integrals (ERIs) in our previous article (M. Hayami, J. Seino, and H. Nakai, J. Chem. Phys. 2015, 142, 204110). The algorithm was formulated using the Gaussian derivative rule to decompose a DERI of two ERIs with the same sets of exponents, different sets of contraction coefficients, and different angular momenta. The algorithms designed for segmented and general contraction basis sets are presented as well. Numerical assessments of the central processing unit time of gradients for molecules were conducted to demonstrate the high efficiency of the ACE‐TRR method for systems containing heavy elements. These heavy elements may include a metal complex and metal clusters, whose basis sets contain functions with long contractions and high angular momenta.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.