Abstract

A method for deriving transitional asymptotic expansions from integral representations is described and applied to Anger function and modified Hankel function. The method consists in deriving asymptotic expansions of the function considered as well as its first derivativeat the transition point using conventional methods such as Laplace’s method or the method of steepest descents. Since both the functions considered satisfy a second order linear differential equation, it is possible to obtain asymptotic expansions of higher order derivatives of the functions from the first two expansions. Thus asymptotic expressions for all the derivatives at the transition point are known and a Taylor expansion of the function in the neighbourhood of the transition point can be written. The method is also applicable to the generalized exponential integral, Weber’s parabolic cylinder function and Poiseuille function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.