Abstract

One more derivation of the quantum probability rule is presented in order to shed more light on the versatile aspects of this fundamental law. It is shown that the change of state in minimal quantum non-demolition measurement, also known as ideal measurement, implies the probability law in a simple way. Namely, the very requirement of minimal change of state, put in proper mathematical form, gives the well-known Lüders formula, which contains the probability rule.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.