Abstract

Cyclooxygenase (COX) inhibitors are ubiquitous in aquatic systems and have been detected in fish tissues. The exposure of fish to these pharmaceuticals is concerning because COX inhibitors disrupt the synthesis of prostaglandins (PGs), which modulate a variety of essential biological functions, including reproduction. In this study, we investigated the effects of well-characterized mammalian COX inhibitors on female fathead minnow reproductive health. Fish (n = 8) were exposed for 96 h to water containing indomethacin (IN; 100 µg/l), ibuprofen (IB; 200 µg/l) or celecoxib (CX; 20 µg/l), and evaluated for effects on liver metabolome and ovarian gene expression. Metabolomic profiles of IN, IB and CX were not significantly different from control or one another. Exposure to IB and CX resulted in differential expression of comparable numbers of genes (IB = 433, CX = 545). In contrast, 2558 genes were differentially expressed in IN-treated fish. Functional analyses (canonical pathway and gene set enrichment) indicated extensive effects of IN on PG synthesis pathway, oocyte meiosis, and several other processes consistent with physiological roles of PGs. Transcriptomic data were congruent with PG data; IN-reduced plasma PG F2α concentration, whereas IB and CX did not. Five putative AOPs were developed linking the assumed molecular initiating event of COX inhibition, with PG reduction and the adverse outcome of reproductive failure via reduction of: (1) ovulation, (2) reproductive behaviors mediated by exogenous or endogenous PGs, and (3) oocyte maturation in fish. These pathways were developed using, in part, empirical data from the present study and other publicly available data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.