Abstract

ObjectiveTo investigate the accuracy of derecruitment volume (VDER) assessed by pressure–impedance (P-I) curves derived from electrical impedance tomography (EIT).MethodsSix pigs with acute lung injury received decremental positive end-expiratory pressure (PEEP) from 15 to 0 in steps of 5 cmH2O. At the end of each PEEP level, the pressure–volume (P-V) curves were plotted using the low constant flow method and release maneuvers to calculate the VDER between the PEEP of setting levels and 0 cmH2O (VDER-PV). The VDER derived from P-I curves that were recorded simultaneously using EIT was the difference in impedance at the same pressure multiplied by the ratio of tidal volume and corresponding tidal impedance (VDER-PI). The regional P-I curves obtained by EIT were used to estimate VDER in the dependent and nondependent lung.ResultsThe global lung VDER-PV and VDER-PI showed close correlations (r = 0.948, P<0.001); the mean difference was 48 mL with limits of agreement of −133 to 229 mL. Lung derecruitment extended into the whole process of decremental PEEP levels but was unevenly distributed in different lung regions.ConclusionsP-I curves derived from EIT can assess VDER and provide a promising method to estimate regional lung derecruitment at the bedside.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.