Abstract

The implementation of aberration correction for the scanning transmission electron microscope (STEM) enables the use of larger probe-forming apertures, improving the transverse resolution significantly and also bringing depth resolution at the nanometer scale. This opens up the possibility of three-dimensional imaging by optical sectioning, and nanometer-scale depth resolution has been demonstrated for amorphous and off-axis samples. For crystalline materials it is usual to image in a zone axis orientation to achieve atomic resolution. In this case, the tendency for the beam to channel along the columns complicates the simple optical sectioning technique. Here we conduct a series of simulations which demonstrate that higher beam convergence angles available in next generation aberration correctors can overcome this limitation. Detailed simulations with realistic values for residual aberrations predict nanometer-scale depth resolution for Bi dopant atoms in Si (110) for an instrument corrected up to fifth order. Use of a monochromator appears to significantly improve the depth resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.