Abstract

BackgroundDoctors mainly use scale tests and subjective judgment in the clinical diagnosis of depression. Researches have demonstrated that depression is associated with the dysfunction of the autonomic nervous system (ANS), where its modulation can be evaluated by heart rate variability (HRV). Depression patients have lower HRV than healthy subjects. Therefore, HRV may be used to distinguish depression patients from healthy people. MethodsHRV signals were collected from 76 female subjects composed of 38 depression patients and 38 healthy people. Time domain, frequency domain, and non-linear features were extracted from the HRV signals of these subjects, who were subjected to the Ewing test as an ANS stimulus. Then, these multiple features were input into Bayesian networks, served as a classifier, to distinguish depression patients from healthy people. Hence, accuracy, sensitivity, and specificity were calculated to evaluate the performance of the classifier. ResultsRecognition results indicate 86.4% accuracy, 89.5% sensitivity, and 84.2% specificity. The individuals subjected to the Ewing test showed better recognition results than those at individual test states (resting state, deep breathing state, Valsalva state, and standing state) of the Ewing test. The root mean square of successive differences (RMSSD) of the HRV exhibits a significant relevance with recognition. ConclusionBayesian networks can be applied to the recognition of depression patients from healthy people and the recognition results demonstrate the significant association between depression and HRV. The Ewing test is a good ANS stimulus for acquiring the difference of HRV between depression patients and healthy people to recognize depression. The RMSSD of the HRV is important in recognition and may be a significant index in distinguishing depression patients from healthy people.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.